A subradiant optical mirror formed by a single structured atomic layer – Nature.com

  • 1.Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).
    ADS 
    MathSciNet 
    CAS 
    Google Scholar 

  • 2.Porras, D. & Cirac, J. I. Collective generation of quantum states of light by entangled atoms. Phys. Rev. A78, 053816 (2008).
    ADS 
    Google Scholar 

  • 3.Jenkins, S. D. & Ruostekoski, J. Controlled manipulation of light by cooperative response of atoms in an optical lattice. Phys. Rev. A86, 031602 (2012).
    ADS 
    Google Scholar 

  • 4.Jenkins, S. & Ruostekoski, J. Metamaterial transparency induced by cooperative electromagnetic interactions. Phys. Rev. Lett. 111, 147401 (2013).
    ADS 
    Google Scholar 

  • 5.González-Tudela, A., Hung, C. L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atomatom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320325 (2015).
    ADS 
    Google Scholar 

  • 6.Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326331 (2015).
    ADS 
    CAS 
    Google Scholar 

  • 7.Facchinetti, G., Jenkins, S. D. & Ruostekoski, J. Storing light with subradiant correlations in arrays of atoms. Phys. Rev. Lett. 117, 243601 (2016).
    ADS 
    CAS 
    Google Scholar 

  • 8.Bettles, R. J., Gardiner, S. A. & Adams, C. S. Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Phys. Rev. Lett. 116, 103602 (2016).
    ADS 
    Google Scholar 

  • 9.Shahmoon, E., Wild, D. S., Lukin, M. D. & Yelin, S. F. Cooperative resonances in light scattering from two-dimensional atomic arrays. Phys. Rev. Lett. 118, 113601 (2017).
    ADS 
    Google Scholar 

  • 10.Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays. Phys. Rev. X7, 031024 (2017).
    Google Scholar 

  • 11.Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).
    ADS 
    Google Scholar 

  • 12.Lehmberg, R. H. Radiation from an N-atom system. I. General formalism. Phys. Rev. A2, 883888 (1970).
    ADS 
    Google Scholar 

  • 13.Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99110 (1954).
    ADS 
    CAS 
    MATH 
    Google Scholar 

  • 14.Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301396 (1982).
    ADS 
    CAS 
    Google Scholar 

  • 15.Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamolu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Google Scholar 

  • 16.Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).
    ADS 
    CAS 
    Google Scholar 

  • 17.Asenjo-Garcia, A., Hood, J. D., Chang, D. E. & Kimble, H. J. Atomlight interactions in quasi-one-dimensional nanostructures: a Greens-function perspective. Phys. Rev. A95, 033818 (2017).
    ADS 
    Google Scholar 

  • 18.Chomaz, L., Corman, L., Yefsah, T., Desbuquois, R. & Dalibard, J. Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis. New J. Phys. 14, 055001 (2012).
    ADS 
    Google Scholar 

  • 19.Jenkins, S. D., Ruostekoski, J., Papasimakis, N., Savo, S. & Zheludev, N. I. Many-body subradiant excitations in metamaterial arrays: experiment and theory. Phys. Rev. Lett. 119, 053901 (2017).
    ADS 
    PubMed 
    PubMed Central 
    Google Scholar 

  • 20.van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science342, 14941496 (2013).
    ADS 
    Google Scholar 

  • 21.Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature569, 692697 (2019).
    ADS 
    CAS 
    Google Scholar 

  • 22.DeVoe, R. G. & Brewer, R. G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 20492052 (1996).
    ADS 
    CAS 
    Google Scholar 

  • 23.Guerin, W., Araújo, M. O. & Kaiser, R. Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016).
    ADS 
    Google Scholar 

  • 24.Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Google Scholar 

  • 25.Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885964 (2008).
    ADS 
    CAS 
    Google Scholar 

  • 26.Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature462, 7477 (2009).
    ADS 
    CAS 
    Google Scholar 

  • 27.Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature467, 6872 (2010).
    ADS 
    CAS 
    Google Scholar 

  • 28.Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature471, 319324 (2011).
    ADS 
    CAS 
    Google Scholar 

  • 29.Meir, Z., Schwartz, O., Shahmoon, E., Oron, D. & Ozeri, R. Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014).
    ADS 
    CAS 
    Google Scholar 

  • 30.Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science347, 12291233 (2015).
    ADS 
    MathSciNet 
    CAS 
    MATH 
    Google Scholar 

  • 31.Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science320, 17341738 (2008).
    ADS 
    CAS 
    Google Scholar 

  • 32.Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017).
    ADS 
    CAS 
    Google Scholar 

  • 33.Bettles, R. J., Miná, J., Adams, C. S., Lesanovsky, I. & Olmos, B. Topological properties of a dense atomic lattice gas. Phys. Rev. A96, 041603 (2017).
    ADS 
    Google Scholar 

  • 34.Manzoni, M. T. et al. Optimization of photon storage fidelity in ordered atomic arrays. New J. Phys. 20, 083048 (2018).
    ADS 
    Google Scholar 

  • 35.Scully, M. O. Single photon subradiance: quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett. 115, 243602 (2015).
    ADS 
    Google Scholar 

  • 36.Guimond, P.-O., Grankin, A., Vasilyev, D. V., Vermersch, B. & Zoller, P. Subradiant Bell states in distant atomic arrays. Phys. Rev. Lett. 122, 093601 (2019).
    ADS 
    CAS 
    Google Scholar 

  • 37.ernotík, O. V., Dantan, A. & Genes, C. Cavity quantum electrodynamics with frequency-dependent reflectors. Phys. Rev. Lett. 122, 243601 (2019).
    ADS 
    PubMed 
    PubMed Central 
    Google Scholar 

  • 38.Shahmoon, E., Lukin, M. D. & Yelin, S. F. Chapter one collective motion of an atom array under laser illumination. Adv. Atom. Mol. Opt. Phys. 68, 138 (2019).
    Google Scholar 

  • 39.Shahmoon, E., Lukin, M. D. & Yelin, S. F. Quantum optomechanics of a two-dimensional atomic array. Preprint at https://arxiv.org/abs/1810.01052 (2018).

  • 40.Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676681 (2020).
    CAS 
    Google Scholar 

  • 41.He, Y. et al. Geometric control of collective spontaneous emission. Preprint at https://arxiv.org/abs/1910.02289 (2019).

  • 42.Henriet, L., Douglas, J. S., Chang, D. E. & Albrecht, A. Critical open-system dynamics in a one-dimensional optical-lattice clock. Phys. Rev. A99, 023802 (2019).
    ADS 
    CAS 
    Google Scholar 

  • 43.Zhang, Y.-X., Yu, C. & Mølmer, K. Subradiant bound dimer excited states of emitter chains coupled to a one dimensional waveguide. Phys. Rev. Res. 2, 013173 (2020).
    CAS 
    Google Scholar

    Source : https://www.nature.com/articles/s41586-020-2463-x

    Leave a Reply

    Your email address will not be published. Required fields are marked *